Hola , ..lo ideal sería que pusieras las cuentas que hiciste para ver en qué te equivocaste, si no, dificil saberlo
\( 2^x + 2^{2x-1} + 2 ^{x+1} + 2^{x+3} + 2^{x-2} = 1984 \)
Voy a separar en productos en base 2 de modo de separar los que tienen "x" y los que no.
\( 2^x+2^{x}2^{x}2^{-1}+2^{x}2+2^{x}2^3+2^{x}2^{-2}=1984 \)
Sacamos el factor común que mencionaba antes,
\( 2^x(1+2^x2^{-1}+2+8+1/4)=1984 \)
Acomodando un poquitito
\( 2^x\left(\displaystyle\frac{45}{4}+\displaystyle\frac{1}{2}2^x \right)=1984 \)
A ver si podes culminar desde acá, una pista, mira el ejercicio 2.

Saludos.