Autor Tema: Un triángulo isósceles

0 Usuarios y 1 Visitante están viendo este tema.

28 Marzo, 2012, 05:57 pm
Leído 494 veces

Michel

  • Lathi
  • Mensajes: 5,998
  • País: es
  • Karma: +0/-0
  • Sexo: Masculino
ABC es un triángulo isósceles en el que AB = AC.
CD es la perpendicular desde C al lado opuesto. Demostrar que \( BC^2=2AB.BD \).
Dios creó los números naturales, el resto es obra del hombre.
L. Kronecker

11 Abril, 2012, 05:01 pm
Respuesta #1

Michel

  • Lathi
  • Mensajes: 5,998
  • País: es
  • Karma: +0/-0
  • Sexo: Masculino
Trazando la altura AE se forma el triángulo rectángulo AEB, que es semejante al CDB por tener un ángulo común, B.

Entonces

\( \displaystyle\frac{BC}{AB}=\displaystyle\frac{BD}{BE}\Rightarrow{\displaystyle\frac{BC}{AB}=\displaystyle\frac{BD}{BC/2}}\Rightarrow{BC^2=2AB.BD} \)

Dios creó los números naturales, el resto es obra del hombre.
L. Kronecker