En un foro en inglés leo:
------------------------------------------------------------
A successful ansatz turned out to be to express the amplitude
as a "Gaussian like" value:
\( \alpha^{1/2}\approx e^{-{\pi^{2}/4}} \)
From here on we can develop a corrective series A by taking
successive differences so that:
\( \alpha^{1/2}\equiv Ae^{-{\pi^{2}/4}} \)
This generates the following series A:
\( A = 1+{\alpha \over (2\pi)^0 }(1+{\alpha \over (2\pi)^1 }(1+{\alpha \over (2\pi)^2 }( 1 + ........ \)
or separated:
\( A = 1+{\alpha \over (2\pi)^0 }+{\alpha^2 \over (2\pi)^1 }+{\alpha^3 \over (2\pi)^3 } + ........ \)
----------------------------------------------------------------
http://www.physicsforums.com/showpost.php?p=333594&postcount=4No veo la forma en que obtiene ese resultado a partir de diferencias sucesivas. ¿Alguien podría ayudarme?