Hola.
Él parece argumentar que si se admite que es continua, entonces el Teorema de Bolzano fallaría (no lo llega a decir explícitamente) para la función \( f(x)=1/x \) en \( [-a,a]. \) Pero el Teorema de Bolzano no falla, sino que simplemente no se puede aplicar porque no estamos en las hipótesis (no hay que hablar ni de continuidad): la función no está definida en ese intervalo.
Entonces si él tiene claro eso. ¿Por qué lo usa como argumento para reforzar que \( 1/x \) no se puede considerar continua?
Pues supongo que por lo que tú has dicho en el párrafo anterior. Supongo que su "defensa" consiste en algo así:
El teorema de Bolzano puede enunciarse como sigue:
Si \[ f(x) \] es continua en \[ [a, b] \] y \[ f(a) f(b) <0 \] entonces existe \[ c\in{(a, b) } \] tal que \[ f(c) =0 \].
Si \[ f(x) =1/x \] fuese continua en \[ [-1,1] \] como \[ f(-1)=-1<0 \] y \[ f(1)=1>0 \] por Bolzano tendríamos que existe \[ x_0\in{(-1,1)} \] tal que \[ f(x_0)=0 \]. Como tal \[ x_0 \] no existe (y el teorema de Bolzano no puede fallar) entonces \[ f \] no es continua en \[ [-1,1] \].
A mí me parece que estamos en las mismas, pero bueno... Es decir, sigue estando abierto el debate sobre si \[ f \] no es continua en \[ [-1,1] \] ¿porque tiene puntos de discontinuidad, o porque tiene puntos en los que no está definida? (Y también está el detalle, un tanto tramposo, de que cuando enuncio el teorema de Bolzano no digo nada sobre el dominio de \[ f \]...).
Pues no sé... Cuestión de convenio sobre un simple sintagma... No creo que haya mucho más...
A mí la verdad es que me parece muy natural decir, en el contexto del ejercicio, que una función es discontinua en un punto aislado del complementario de su dominio. Juraría que también lo he visto en literatura universitaria. Concretamente cuando se habla de discontinuidades evitables.
Por curiosidad, entre estas frases, ¿cuáles os chirrían más y cuáles menos?
\[ f(x) =1/x \] es continua en todo su dominio.
\[ f(x) =1/x \] es continua en \[ \mathbb{R-\{0\}} \].
\[ f(x) =1/x \] es continua en cualquier número real salvo en el 0.
\[ f(x) =1/x \] no es continua en \[ x=0 \] pero sí en el resto de números reales.
\[ f(x) =1/x \] es discontinua en \[ x=0 \] pero continua en el resto de números reales.
Gracias. Un saludo.
