Hola,
Partiendo de que, \( \underline{X}:(\omega,\mathcal{F},\mathbb{P})\longrightarrow{}(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)) \) es un vector aleatorio (y \( (\omega,\mathcal{F},\mathbb{P}) \) un espacio de probabilidad) n-dimensional. Definimos la función de conjuntos \( \mathbb{P}_{\underline{X}}:(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))\longrightarrow{}[0,1] \)
como:
\( \mathbb{P}_{\underline{X}}(B)=\mathbb{P}(\underline{X}^{-1}(B)),\forall{}B\in\mathcal{B}(\mathbb{R}^n) \)
Quiero probar que la terna \( (\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n),\mathbb{P}_{\underline{X}}) \) es un espacio de probabilidad.
Es claro que \( (\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)) \) es un espacio de medida pues \( \mathcal{B}(\mathbb{R}^n) \) es una sigma-álgebra sobre \( \mathbb{R}^n \).
Faltaría por tanto probar que \( \mathbb{P}_{\underline{X}} \) es una medida de probabilidad. Por definición \( 0\leq{}\mathbb{P}_{\underline{X}}\leq{}1 \), por tanto verifica la primera propiedad. Queda probar que:
1)\( \mathbb{P}_{\underline{X}}(\emptyset)=0 \)
2)Si \( A_1,A_2,...,A_n\in\mathcal{B}(\mathbb{R}^n) \) son conjuntos disjuntos entonces
\( \mathbb{P}_{\underline{X}}(A_1\cup{}...\cup{}A_n)=\displaystyle\sum_{i=1}^n{\mathbb{P}_{\underline{X}}(A_i)} \)
Y me temo que no encuentro la forma probar ni 1) ni 2).
Un saludo.