Hola
Por completar voy a detallar como construir la isometría, mediante composición de varias isometrías.
Supongamos que \( d(R_1,S_1)=d(R_2,S_2) \) y \( ang(R_1,S_1)=ang(R_2,S_2). \)
Sean \( P_i\in R_i \) y \( Q_i\in S_i \) los únicos puntos en las rectas tales que d(R_i,S_i)=d(P_i,Q_i) (los puntos de las rectas a mínima distancia y por tanto dan la distancia entre ellas). Recordemos que el vector \( P_iQ_i \) es perpendicular a ambas rectas.
1) Mediante una traslación podemos llevar \( P_1 \) en \( P_2 \). En cada paso mantengo el nombre de los objetos transformados. De esta forma ahora \( P_1=P_2 \).
2) Mediante un giro llevamos \( R_1 \) en \( R_2 \) manteniendo el punto \( P_1 \) fijo. Ahora \( R_1=R_2 \).
3) Los vectores \( \vec{P_1Q_1} \) y \( \vec{P_2Q_2} \) son ambos perpendiculares a \( R_1=R_2 \) y de la misma longitud. Por tanto con un giro de eje \( R_1=R_2 \) podemos llevar \( Q_1 \) en \( Q_2, \) manteniendo el eje de giro fijo. Ahora \( Q_1=Q_2 \).
4) Ahora las rectas \( S_1 \) y \( S_2 \) son ambas perpendicualres al vector \( \vec{P_1Q_1}=\vec{P_2Q_2} \), es decir, están en el plano perpendicular a ese vector que pasa por el punto \( Q_1=Q_2. \) Como ambas rectas forman el mismo ángulo con \( R_1=R_2 \) o coinciden o bien una es simétrica de la otra respecto al plano que forman \( R_1=R_2 \) y \( Q_1=Q_2 \). Con esto hemos terminado.
Saludos.