Hola , a partir de lo que obtuviste, multiplico por 2 arriba y abajo luego:
$$\frac{1+\sin x \cos x}{\sin x +\cos x}= \frac{2+2 \sin x \cos x}{2(\sin x+\cos x)}=\frac{2+ \sin 2x }{2(\sin x+\cos x)} = \frac{2+2 \sin 2x -\sin 2x}{2(\sin x+\cos x)} = \frac{2+2 \sin 2x }{2(\sin x+\cos x)} -\frac{\sin 2x }{2(\sin x+\cos x)}= \frac{1+ 2 \sin x \cos x }{(\sin x+\cos x)} -\frac{\sin 2x }{2(\sin x+\cos x)}$$
$$ = \frac{(\sin x+\cos x)^2 }{(\sin x+\cos x)} -\frac{\sin 2x }{2(\sin x+\cos x)}=(\sin x+\cos x) -\frac{\sin 2x }{2(\sin x+\cos x)} $$