Autor Tema: Probar que es de Equivalencia

0 Usuarios y 1 Visitante están viendo este tema.

01 Junio, 2019, 04:58 am
Leído 1375 veces

AveFenix

  • Ya quisiera tener uno
  • Junior
  • Mensajes: 57
  • Karma: +0/-0
  • Sexo: Masculino
Hola Buenas Días, Tardes o Noches. Aquí sigo estudiando .

Quisiera que me verificaran este ejercicio ya que me confunde un poquito.

En \( \mathbb{R}^2 \) se define la relación \( \sim \)según:
\( (x,y)\sim{(x',y')\iff{x^2-x'^2+y-y'=0}} \)

Probar que es de Equivalencia:

Reflexiva:

\( a\sim{a} \)
\( x^2-x'^2=x^2-x'^2 \) \( \rightarrow{aRa} \)

Simétrica:\( a\sim{b\rightarrow{b\sim{a}}} \)

\( x^2−x′^2+y−y′=y−y′+x^2−x'^2 \)  \( \rightarrow{bRa} \)

Transitiva:

\( aRb \)     \( x^2−x′^2+y−y' \)
\( bRc \)     \( y−y'+c^2−c'^2 \)
        _______________________
           \( x^2-x'^2=c^2-c'^2 \)

Esta o me equivoque al plantear todo? , agradezco así aprendo si me equivoque. Saludos.
Estudiar Matemáticas se volvió una pasión, que me duele la cabeza ^^.
Nivel Principiante.

01 Junio, 2019, 06:04 am
Respuesta #1

manooooh

  • Matemático
  • Mensajes: 2,991
  • País: ar
  • Karma: +1/-0
  • Sexo: Masculino
Hola

El enunciado dice

\( x^2-x'^2+y-y'=0 \)

pero parece que por tus cuentas en realidad es

\( x^2-x'^2+y-y'^2=0. \)

Por favor revisá.

Saludos

01 Junio, 2019, 04:35 pm
Respuesta #2

AveFenix

  • Ya quisiera tener uno
  • Junior
  • Mensajes: 57
  • Karma: +0/-0
  • Sexo: Masculino
Anoche cuando respondí eran las 3:00AM  , y respondí por el celular sacando captura.., tenia errores en el post inicial que no me di cuenta.

No me doy cuenta en donde falle?


Estudiar Matemáticas se volvió una pasión, que me duele la cabeza ^^.
Nivel Principiante.

01 Junio, 2019, 04:41 pm
Respuesta #3

geómetracat

  • Moderador Global
  • Mensajes: 1,710
  • País: es
  • Karma: +0/-0
  • Sexo: Masculino
Está mal, creo que te estás haciendo un lío.
La relación es:
\( (x,y) \sim (x',y') \iff x^2-x'^2 + y -y' =0 \).
El conjunto donde tienes definida la relación es \( \Bbb R^2 \), los elementos son pares ordenados \( (x,y) \).
Así por ejemplo, para la reflexiva, tienes que probar que para cualquier par \( (x,y) \) se cumple
\( (x,y) \sim (x,y) \),
es decir, hay que probar que
\( x^2 -x^2 +y-y=0 \),
que es claramente verdad.

Puedes probar ahora tú con la simétrica y la transitiva
La ecuación más bonita de las matemáticas: \( d^2=0 \)

01 Junio, 2019, 04:55 pm
Respuesta #4

AveFenix

  • Ya quisiera tener uno
  • Junior
  • Mensajes: 57
  • Karma: +0/-0
  • Sexo: Masculino
Ahhhhh claro , ya esta.

Ahora me tengo que ir y no me va dar el tiempo de poner todo aqui, pero lo acabo de corregir todo en el cuaderno.


Apenas regrese seguramente en la noche, pongo lo que puse!.
Gracias!!
Estudiar Matemáticas se volvió una pasión, que me duele la cabeza ^^.
Nivel Principiante.

02 Junio, 2019, 03:54 pm
Respuesta #5

AveFenix

  • Ya quisiera tener uno
  • Junior
  • Mensajes: 57
  • Karma: +0/-0
  • Sexo: Masculino
Disculpen ayer , no estuve en todo el día en casa,
hoy voy a estudiar todo el día , así que probablemente este en el foro.

Voy a poner la Transitiva entonces corregida :(si no me equivoco)

\( (x,y)R(z,v)\wedge \)\( (z,v)R(w,p)\rightarrow{(x,y)R(w,k)} \)

\( x^2-z^2+y-v=0 \)  aRb   
                                                  \( \rightarrow{x^2+y-w^2-k=0} \) aRc
\( z^2-w^2+v-k=0 \)  bRc
_____________________
\( x^2-w^2+y-k=0 \)



Saludos Gracias!.
Estudiar Matemáticas se volvió una pasión, que me duele la cabeza ^^.
Nivel Principiante.

02 Junio, 2019, 05:36 pm
Respuesta #6

geómetracat

  • Moderador Global
  • Mensajes: 1,710
  • País: es
  • Karma: +0/-0
  • Sexo: Masculino
La exposición es un poco rara (estaría bien que dejaras claro que estás restando las dos ecuaciones y que pusieras el \( =0 \) en la fila de abajo), pero está bien.
Ahora sí que has entendido cómo hacer el ejercicio.
La ecuación más bonita de las matemáticas: \( d^2=0 \)

02 Junio, 2019, 05:40 pm
Respuesta #7

AveFenix

  • Ya quisiera tener uno
  • Junior
  • Mensajes: 57
  • Karma: +0/-0
  • Sexo: Masculino
La exposición es un poco rara (estaría bien que dejaras claro que estás restando las dos ecuaciones y que pusieras el \( =0 \) en la fila de abajo), pero está bien.
Ahora sí que has entendido cómo hacer el ejercicio.


Listo, ya lo edite.

Hoy va a ser un día en el que seguramente este unas 8 horas haciendo ejercicios  ::) , tengo todo el día,
Ahora voy a publicar otro ejercicio en un post, que acabo de efectuar y es para verificar si esta bien echo o esta mal.
Arranque hace poquitos días con este tema, pero quiero dominarlo cuanto antes para cuando tenga el examen.

Gracias a todos, saludos
Estudiar Matemáticas se volvió una pasión, que me duele la cabeza ^^.
Nivel Principiante.