21
Lógica / Teorema de Gödel
« en: 02 Junio, 2009, 10:58 pm »
Hablo este hilo para hablar sobre el teorema de Gödel.
Bueno. No sabía como empezar. Russell descubrió una paradoja en la teoría de conjuntos (ya saben, la del conjunto de todos los conjuntos que no pertenecen a sí mismos). (Las proposiciones que se refieren a sí mismas suelen ser paradójicas. Por ejemplo: "Esta proposición no habla sobre el teorema de Gödel" ó "El menor número que no se puede definir con menos de 15 signos").
Russell escribió con Witehead los Principia Mathematica, para librar a la matemática de paradojas. El libro de Russell establecía una jerarquía de lenguajes, la teoría de tipos, para evitar las proposiciones autorreflexivas.
Sin embargo, Gödel encontró una proposición que era verdadera pero no era demostrable en el sistema. El sistema era incompleto. No contenía todas las verdades.
La proposición venía a decir "Esta proposición no es demostrable en el sistema" (es decir, recordaba a la paradoja de Russell). Para construir esta proposición, Gödel recurrió a la "numeración de Gödel" (ya veremos lo que era esto).
Bueno. No sabía como empezar. Russell descubrió una paradoja en la teoría de conjuntos (ya saben, la del conjunto de todos los conjuntos que no pertenecen a sí mismos). (Las proposiciones que se refieren a sí mismas suelen ser paradójicas. Por ejemplo: "Esta proposición no habla sobre el teorema de Gödel" ó "El menor número que no se puede definir con menos de 15 signos").
Russell escribió con Witehead los Principia Mathematica, para librar a la matemática de paradojas. El libro de Russell establecía una jerarquía de lenguajes, la teoría de tipos, para evitar las proposiciones autorreflexivas.
Sin embargo, Gödel encontró una proposición que era verdadera pero no era demostrable en el sistema. El sistema era incompleto. No contenía todas las verdades.
La proposición venía a decir "Esta proposición no es demostrable en el sistema" (es decir, recordaba a la paradoja de Russell). Para construir esta proposición, Gödel recurrió a la "numeración de Gödel" (ya veremos lo que era esto).