Mostrar Mensajes

Esta sección te permite ver todos los posts escritos por este usuario. Ten en cuenta que sólo puedes ver los posts escritos en zonas a las que tienes acceso en este momento.

Mensajes - javier m

Páginas: 1 2 3 [4] 5 6 7 8
61
Números complejos / Re: hallar las raíces
« en: 21 Septiembre, 2011, 04:19 am »
yo tampoco te entendí :p al comienzo

bueno, si \( (z+1)^2=i \) entonces \( |z+1|=1 \) y el angulo formado con semieje de las x es \( \theta=\dfrac{\pi}2 \)

de modo se puede usar la formula de las raices

\( z+1=\cos{\dfrac{\theta+2\pi k}{2}}+i\sin {\dfrac{{\theta+2\pi k}}{2}} \)

así

\( z=-1+\cos{\dfrac{\pi/2+2\pi k}{2}}+i\sin {\dfrac{{\pi/2+2\pi k}}{2}} \)

siendo k=1 e igual 2

62
Álgebra Lineal (Espacios Vectoriales) / Problema acerca del campo Z5
« en: 21 Septiembre, 2011, 03:12 am »
hola, encontré este problema en un examen por ahí y no tengo idea de como se hace y tampoco entiendo algo que dice.
el problema es este:

En el campo \(  \mathbb{Z}_5 \) la ecuación \( x^2=2 \) no tiene solución. Sea \( u \) tal que \( u^2=2 \). Entonces agregando \( u \) al campo \( \mathbb{Z}_5 \) obtengo el campo \( \mathbb{Z}_5[u] \) con 25 elementos en donde \( (u+1)^2= \)

a) 1
b) u+2
c) \( 2u+3 \)
d) 2u
e) u+1
f) OTRA

La respuesta es c) \( 2u+3 \) , ¿pero por qué?

una cosa que no entendí, ¿como asi que si agregan a \( u \), el campo pasa de tener 5 elementos a tener 25?  ??? no entendí eso

63
Lógica / Re: ¿Existe x? o ¿Para todo x?
« en: 10 Septiembre, 2011, 12:33 am »
nktclau, creo que cuando es uno solo se escribe \( \exists ! x \)

y \( \exists x \) es cuando es al menos uno.

64
Álgebra Lineal (Espacios Vectoriales) / Re: Ángulo entre vectores
« en: 27 Agosto, 2011, 03:04 am »
bueno, eso lo di hace algunas semanas  :P

creo que, como el angulo está definido entre 0 y 2pi, se deberían copiar todas.

PD: la respuesta no es unica de 0 a pi  ;), mira que 150° también cumple.

65
Álgebra Lineal (Espacios Vectoriales) / Re: Ángulo entre vectores
« en: 27 Agosto, 2011, 02:45 am »
si no me falla la memoria....

el angulo entre dos vectores está definido entre 0 y 2\( \pi \), (\( 0\leq{\alpha}\leq{2\pi} \))

y ademas

\( |\vec{a}\times{\vec{b}}|=|\vec{a}||\vec{b}||\sen\alpha| \)

tendrias que

\( sen\alpha=0,5 \) y \( sen\alpha=-0,5 \)

\( sen 30° =0,5 \)

\( sen 150° =0,5 \)

\( sen 330°= -0,5 \)

\( sen 210°=-0,5 \)

...si no me falla la memoria

67
hola argentinator, tengo una duda muy tontilla.

en la parte de intercepción

Citar
Ejercicio Anexo.1.1.d. Demostrar que dos conjuntos \( A, B \) son disjuntos si, y sólo si,\( A\cap  B = \emptyset \) .
(Esto también podría tomarse como definición de disjuntez)

no veo como seria la demostración, es que tan obvio que no veo que demostración pueda tener.
¿no seria mejor decir que eso es la definición (como bien dice en el parentisis) y ya ?

68
bueno, es que no siempre hay tiempo  y ganas de estudiar.

osea, no vale la pena estudiar algo que no sea necesario estudiar sino hay ganas de hacerlo

el tiempo en el que me pongo a leer el curso se da de forma espontanea y no tengo horario fijo.

por eso (por lo menos yo) la gente lleva un paso lento en este curso.

te paciencia  ;)

69
hola argentinator.

tengo una situación: no he podido avanzar mucho con el curso, de hecho apenas estoy cerca de llegar a los ejercicos de demostrar el algebra de conjuntos.
no he podido avanzar mucho porque tengo que estudiar otras cosas referente a mi carrera, pero resulta que dentro de poco entro a vacaciones y quisiera aprovechar para adelantarme un poco, el problema es que cuando entre a vacaciones no voy a tener internet.

asi que la pregunta es: ¿tienes el curso en un archivo adjunto para poder descargarlo?

70
gracias a los 2.

71
hola, necesito demostrar que el determinate de un producto de matrices es igual al producto del determinante de cada matriz (\( |A.B|=|A||B| \))

la verdad no se me ocurre ni por donde empezar, así que si quieren darme una ayuda, o darme un link o un libro que tenga la demostración, se los agradecería.

72
Temas de Física / Re: Movimiento circular
« en: 29 Julio, 2011, 07:53 pm »
pues, no veo el porque no sería así.

el t está dentro de una función trigonométrica, así que lo que me parece lo mas lógico que en algún momento para conseguir t hay que despejarlo de la función trigonométrica.

PD: ahora que miro lo que preguntan, me doy cuenta de que no piden el tiempo en ningún momento

73
Temas de Física / Re: Movimiento circular
« en: 26 Julio, 2011, 06:47 pm »

Mmmm, quiere decir que no lo has intentado porque no hay nada que despejar en

                    \( \vec{a}\cdot{\vec{v}}=0 \)



hay que despejar \( t  \), de \( \sin 2\pi t=0 \)

74
me inscribo.

pero tengo una duda, si no me hubiese escrito no hubiera podido ver el contenido del curso?

75
Foro general / Re: Perfil del matemático
« en: 22 Julio, 2011, 05:15 pm »
 a veces la gente toma -consiente o inconscientemente- comportamientos diferentes para que la gente crea que tiene una especie de locura de tanta genialidad.
sentir que la gente piense que uno es genio sube el ego.

76
por propiedad de los logaritmos

\( \ln(4x^2)-lnx=\ln\dfrac{4x^2}{x} \)


obviamente, todo eso igual a 0
mira si das para terminar

77
De oposición y olimpíadas / Re: find x
« en: 19 Junio, 2011, 07:39 pm »
me sumo a la pregunta

79

 para escribir una fracción grande no hay que escribir \dysplaystile\frac{}{}, sino que con \dfrac{}{} basta.


Acá también anda el comando \dfrac. De hecho funcionan bien todos los comandos usuales de Latex.
Yo escribo Latex como "en casa" y todo me anda bien.



y que tal este hilo http://rinconmatematico.com/foros/index.php/topic,46856.msg185776.html#msg185776?

a, se me olvidaba, no se si sera un problema de mi ordenador, pero cuando le doy previsualizar  al momento de escribir una respuesta, no alcanzo a ver toda mi respuesta, solo me sale un renglón y tengo que darle a la pestaña para poder seguir leyendo mi mensaje de renglón en renglón

80
Un voto a favor. No estudio física, pero me interesan bastantes temas de dicha ciencia. Es una lástima que la carrera en matemáticas consuma la mayor parte de mi tiempo (digo, no me desagrada).

También, estoy de acuerdo que sean pocas secciones por lo mientras.
Además, yo prefiero esta web sobre otras (la web de física) más que nada por su organización y la atención que tiene por parte de los mismos moderadores y administradores.

a mi ,particularmente, me parece que la web de física es mas vacana:

tiene muchos emoticonos, unos muy divertidos.
uno tiene su propio perfil bien personalizado. así que la gente se distingue mas fácil que acá que no hay avatar
no tiene el problema de el latex: las formulas siempre salen. para escribir una fracción grande no hay que escribir \dysplaystile\frac{}{}, sino que con \dfrac{}{} basta.
los administradores son estrictos, pero uno siempre puede hallar la forma de burlarlos  ;D.
no hay que preocuparse porque la palabra límite no lleve la tilde.
subir imagenes y videos es supersencillo, solo hay que dar le click a el botón y listo.
hay una parte de humor y otra de historietas

y por ultimo y mas importante (para mi) : es de Física

el rincón matemático tiene geogebra, y eso es bueno pero la web de física me parece mejor, debe ser porque estudio física  ::) y por las otras cosas que comenté.

saludos.

Páginas: 1 2 3 [4] 5 6 7 8