1
Probabilidad / Un juego con dados.
« en: 28 Mayo, 2018, 07:25 am »
Hola.
Revisando un juego de mesa me he encontrado con este sistema de puntuación que he intentando modelizar sin éxito:
Tenemos un dado ideal de 10 caras, numeradas del 1 al 10. Se considera un éxito si el resultado de lanzar un dado es mayor o igual que 6, y se considera un fracaso sacar un 1, con la peculiaridad de que un fracaso anula un éxito, de modo que si lanzamos el dado dos veces y obtenemos (6,9) habremos obtenido dos éxitos, si obtenemos (8,1) serán cero los éxitos (el uno anula el éxito del 8), si obtenemos (8,3) habremos conseguido un éxito, y si saquésemos (1,1) tendríamos -1 éxitos; es decir, se pueden sacar éxitos "negativos".
Dado este sistema, me preguntaba cuál es la probabilidad de sacar más éxitos que fracasos tirando el dado \( n \) veces. No sé si se puede determinar un modelo para el caso general, así que me conformo para \( n=4 \). Es decir, tirando el dado \( 4 \) veces, ¿cuál es la probabilidad de obtener más existos que fracasos? Mi problema principal radica en cómo tratar matemáticamente a los fracasos. Si intento hallar la probabilidad para una sola tirada, tendríamos \( P(1) =\dfrac{4}{10} \), pero al pasar a 2 tiradas no sé cómo meter los fracasos en el modelo.
Saludos.
Revisando un juego de mesa me he encontrado con este sistema de puntuación que he intentando modelizar sin éxito:
Tenemos un dado ideal de 10 caras, numeradas del 1 al 10. Se considera un éxito si el resultado de lanzar un dado es mayor o igual que 6, y se considera un fracaso sacar un 1, con la peculiaridad de que un fracaso anula un éxito, de modo que si lanzamos el dado dos veces y obtenemos (6,9) habremos obtenido dos éxitos, si obtenemos (8,1) serán cero los éxitos (el uno anula el éxito del 8), si obtenemos (8,3) habremos conseguido un éxito, y si saquésemos (1,1) tendríamos -1 éxitos; es decir, se pueden sacar éxitos "negativos".
Dado este sistema, me preguntaba cuál es la probabilidad de sacar más éxitos que fracasos tirando el dado \( n \) veces. No sé si se puede determinar un modelo para el caso general, así que me conformo para \( n=4 \). Es decir, tirando el dado \( 4 \) veces, ¿cuál es la probabilidad de obtener más existos que fracasos? Mi problema principal radica en cómo tratar matemáticamente a los fracasos. Si intento hallar la probabilidad para una sola tirada, tendríamos \( P(1) =\dfrac{4}{10} \), pero al pasar a 2 tiradas no sé cómo meter los fracasos en el modelo.
Saludos.