Mostrar Mensajes

Esta sección te permite ver todos los posts escritos por este usuario. Ten en cuenta que sólo puedes ver los posts escritos en zonas a las que tienes acceso en este momento.

Temas - Leonardog

Páginas: [1]
1
Cálculo 1 variable / Dominio de función de 2 variables
« en: 13 Agosto, 2008, 06:17 pm »
Hola, tengo el siguiente ejercicio:
\( z=f(x;y)=\sqrt{1-x-e^x/y} \)
Tengo que hallar y graficar el dominio.
Planteando
\( 1-x-e^x/y \geq {0} \)
Llego a:
\( y \geq{\displaystyle\frac{x}{ln(1-x)}} \)
Sin embargo, para \( x=0 \) tambien es parte del dominio.
Como deberia plantearse?
Salu2,

2
Cálculo 1 variable / ¿Integrales largas?
« en: 17 Agosto, 2007, 03:52 am »
Buenas, yo de nuevo molestando con integrales.
Tengo las siguientes 2 integrales:
\( \displaystyle\int_{}^{} \displaystyle\frac{dx}{x \sqrt[3 ]{1+x^5}} \)
y
\( \displaystyle\int_{}^{} \displaystyle\frac{x^{-2}dx}{\sqrt[ ]{(2+x^3)^5}} \)

La primera creo que la tengo, solo que es un poco larga! Alguien podría tirar alguna pista?
Yo básicamente hice primero la sustitución \( t=1+x^5 \) con lo cual llego a:
\( \displaystyle\int_{}^{}\displaystyle\frac{t^{-1/3} dt}{t-1} \)
A esa integral la resuelvo como irracional, haciendo: \( t=u^3 \) llegando a:
\( \displaystyle\int_{}^{}\displaystyle\frac{u du}{u^3-1} \)
Esa integral la resuelvo como racional, que encima tiene una raíz real y un par de complejas, por lo que hay que descomponer de una forma un poco mas larga. Finalmente de esa integral me salen 2 logaritmos y un arco tangente. Se ve bien el procedimiento?  ??? Es probable que a lo anterior le falten algunas constantes que saco fuera de la integral.  :o

Para la segunda no sé, imagino que será algo parecido, todavía no la empiezo.  :banghead:

Bueno, espero sugerencias...  ;D
Salu2,

3
Cálculo 1 variable / Integral complicada
« en: 08 Agosto, 2007, 04:45 pm »
Buenas, tengo la siguiente integral:
\( \displaystyle\int_{}^{}\displaystyle\int_{}^{} (x^2+3y^2)dxdy \)
Donde el dominio de integracion es \( x^2 + y^2 \leq{1} \)

En coordenadas polares sale relativamente fácil, y me da el resultado: \( \pi \)

El tema es que sale en un apunte antes de tratar el tema de cambio de coordenadas, por lo cual entiendo que pide que se resuelva sin hacer el cambio. Llego a unas integrales que se me complican! Usando una tabla de integrales llego al resultado, pero estoy tratando de hacer todo el desarrollo.
Alguna sugerencia?
Salu2,

4
Cálculo 1 variable / Problema con 2 integrales
« en: 19 Junio, 2007, 12:37 pm »
Hola a todos, tengo problemas al resolver estas 2 integrales:

1) \( \displaystyle\int_{}^{}\sqrt{x} \cdot \sen(x) dx \)

2) \( \displaystyle\int_{}^{}\sqrt{x} \cdot e^x dx \)

Intenté resolverlas, pero no llego a un resultado. Utilizando Maxima me da un resultado en el cual sale la funcion error o de Gauss, y teniendo eso en cuenta tampoco llego.  ???
¿Alguna sugerencia?  :banghead:
Salu2,

5
Cálculo 1 variable / Continuidad
« en: 30 Abril, 2007, 02:46 am »
Buenas, tengo la siguiente duda. Es un ejercicio de continuidad, la función es:

\( y(x) = \left |{\sqrt{x^2-1}}\right | \)

El argumento de la raíz es una simple parábola, que tiene valores no negativos para \( \left |{x}\right |\geq{1} \)

Ahora bien, la función es continua o no? Si me ajusto a las condiciones de continuidad la función las cumple para todo su dominio, incluso en x=1 o x=-1, donde un límite lateral no existe. Sin embargo, la función no es continua desde el punto de vista gráfico. En el intervalo donde \( \left |{x}\right |<{1} \) la función no está definida (en los R), por ende no pertenece al dominio así que no entraría en el analisis de continuidad.
Ahora bien, si la continuidad no se analiza en el dominio, me queda que casi todas las funciones son continuas! (exceptuando las funciones donde hay un salto finito, como la funcion signo). Es decir:
y=1/x es continua, ya que su dominio es R - {0}
\( y=\displaystyle\frac{x^2-1}{x-1} \) es continua, porque x=1 no pertenece al dominio, o tiene una discontinuidad evitable? Depende si excluyo a x=1 del dominio y del analisis de continuidad o no?
Para esto estoy basandome en \( \displaystyle\lim_{dx \to 0}{dy}=0 \)
No tengo conocimientos de topología, donde entiendo que hay una explicación mas general y sencilla.
Espero comentarios,
Salu2!




6
Propuestos por todos / Traza de GPS
« en: 11 Abril, 2007, 11:22 pm »
Hola a todos. Tengo el siguiente problema, y no sé muy bien donde publicarlo. (Geometría?)

Tengo un receptor de GPS, el cual me da puntos en 2 dimensiones (latitud/longitud, o x/y). Tengo además, la traza patrón que debería haber cumplido, digamos la ruta que debería haber seguido.
Necesito encontrar formas de dar un factor de mérito para decir cuanto se acerca una traza a la otra. ¿Alguien tiene alguna sugerencia?
En principio, la traza patrón tiene mas definición (más puntos) que la traza a comparar.
Se me ocurren los siguientes metodos:
1) Calcular la distancia de cada punto de la traza al punto de la traza patrón mas cercano. Definido un limite, la cantidad de puntos que no cumplan la distancia minima es un valor de mérito.
2) Lo mismo que 1 pero al revés, es decir ver cuantos puntos de la patrón están mas lejos de la traza que un valor fijo.
3) Ensanchar las rectas formadas por el recorrido a comparar (formando cuadrilateros) y ver cuantos puntos del patrón estén encerrados y cuantos afuera.

A todas le encuentro contras, alguien sugiere algo mejor?
Saludos,

7
Foro general / Algoritmos de Calculadora
« en: 08 Mayo, 2005, 06:40 am »
Buenas a todos. Se me presentó la siguiente duda:
¿Qué metodos de aproximación usa una calculadora para calcular los valores de por ejemplo sen(x), log(x)? Es decir, usa aproximación aplicando polinomio de Taylor? Diferenciales? Otro tipo de aproximacion?
Salu2...

8
Cálculo 1 variable / Límite
« en: 28 Abril, 2005, 01:30 pm »
Buenas, estoy recopilando ejercicios para hacer un apunte (de libros, apuntes, etc) y encontré un límite que no pude resolver, teniendo en cuenta que está en la parte antes de L'Hopital, es decir, no se puede aplicar.
El límite es:
y=(x1/n - a1/n)/(x-a) para x->a

Estuve haciendo algunos desarrollos, pero no llego al resultado. (que lo saqué haciendo trampa con L'Hopital!)
Salu2!

P/D: prometo en breve aprender a usar LateX!


9
Cálculo 1 variable / Continuidad
« en: 27 Noviembre, 2004, 03:12 pm »
Ayer, en el exámen final de Analisis 1, yo me encontraba pasando notas y escuchando algunos exámenes orales, haciendo preguntas etc.
Resulta que 2 profesores (de esos que saben...) se habian puesto a discutir si la funcion y=x^1/2 es continua en x=0. (obviamente, para que hubiera discusión, uno lo afirmaba y el otro lo negaba)
Como dicha función cumple las condiciones de continuidad, yo afirmaba que era continua. Pero el hecho de que un profe afirmaba lo contrario, me planteó la duda, de que algo se me escapara.

Creo que el planteo del profe se basaba en que el limite lateral izquierdo para x->0 no existe (en realidad no es real), pero según tengo entendido, para que el límite exista, los límites laterales deben ser iguales sólo si existen.

Alguien sabe si hay alguna razón especial por lo cual la función no es continua en x=0?

Salu2...

10
Propuestos por todos / Asíntotas oblicuas
« en: 12 Octubre, 2004, 05:59 am »
Mi pregunta es la siguiente:
En los cursos donde doy clases es un error común el suponer que una función NO puede cortar a una asíntota HORIZONTAL, lo cual es fácil de demostrar que sí puede. Ahora bien, una función ¿puede cortar a una asíntota oblicua? Tengo entendido que sí puede suceder, pero no tengo ningún ejercicio (es decir, una función) en donde suceda. ¿Alguien tiene alguno?
Gracias...

11
Propuestos por todos / Para pensar un minuto
« en: 08 Octubre, 2004, 01:42 pm »
Para pensar un poco:
Una persona caminó 5 metros en una dirección fija. Luego, giró exactamente 90º a la derecha, caminó unos 10 metros, volvió a girar 90º a la derecha, caminó 5 metros y se dió cuenta que había llegado al lugar de origen. ¿Cómo hizo?

12
Propuestos por todos / Problema de Peso
« en: 07 Octubre, 2004, 01:46 pm »
Hace poco que estoy en el foro, así que espero que este problema no lo hayan publicado. Lo propongo porque esta bueno:
Tengo 15 bolitas (monedas, piezas o lo que les guste) las cuales pesan exactamente lo mismo salvo una (que pesa un poco mas). Si tenemos una balanza electrónica (que da el peso exacto) y NO sabemos el peso de la bolita (ni de la común ni de la mas pesada), en cuantas pesadas se puede encontrar la bolita "diferente"?
Saludos....

Páginas: [1]