Rincón Matemático

Matemática => Geometría sintética (Euclídea, Plana) => Geometría y Topología => Triángulos => Mensaje iniciado por: doncarlitos en 18 Marzo, 2013, 06:45 am

Título: en ralacion con el baricentro
Publicado por: doncarlitos en 18 Marzo, 2013, 06:45 am
HOLA:

Dado un triangulo ABC demostrar que para cualquier recta que pase por su baricentro , la distancia de uno de los vertices a dicha recta , es suma de las distancias de los otros 2 vertices a la misma recta

Saludos
Título: Re: en ralacion con el baricentro
Publicado por: Michel en 18 Marzo, 2013, 08:11 am
Hola doncarlitos; feliz regreso; se te echaba de menos.

Sean A’, B’, C’ los pies de las perpendiculares trazadas por el baricentro G a la recta r. Sea M el punto medio del lado BC y M’ su proyección sobre r.

Por la propiedad del baricentro de un triángulo y por la semejanza de los triángulos rectángulos AA’G  y MM’G:

\[ \displaystyle\frac{AA'}{MM'}=\displaystyle\frac{AG}{M'G}=2  \Rightarrow{AA'=2MM'} \]

Por otra parte, MM’ es la paralela media del trapecio BCC’B’: 

\[ MM'=\displaystyle\frac{BB'+CC'}{2}\Rightarrow{2MM'=BB'+CC'} \]

Por tanto,  AA'=BB'+CC'