Rincón Matemático

Revista, Técnicas, Cursos, Problemas => Problemas y Desafíos => Problema del mes => Mensaje iniciado por: Nicolas Bourbaki en 01 Octubre, 2003, 10:02 pm

Título: El problema de Halmos
Publicado por: Nicolas Bourbaki en 01 Octubre, 2003, 10:02 pm
Hola!

No recuerdo muy bien a que mes corresponde el problema de Halmos, aquel en el que se planteaba la deduccion de uno de los axiomas definitorios de un espacio vectorial a partir del resto de axiomas, pero hoy he observado una cuestion, quizas no es correcta, pero creo que la he resuelto bien, veran:

El espacio vectorial se define siempre, a no ser que se diga lo contrario, en un K conjunto abeliano; yo he observado que si extendemos el conjunto abeliano a un cuerpo, hay otro axioma, referente al producto, que tambien se deduce del resto. Me refiero a: (ab)v -> a(u+v). Siendo a un numero R y u,v elementos del "cuerpo" K.

Eso es todo!!