Hello
The region is limited by \( 0\leq{\theta}\leq{\displaystyle\frac{\pi}{4}} \) and \( 0\leq{r}\leq{\displaystyle\frac{sen \theta}{cos^2 \theta}} \)
Demostrating :
The region R is determinated by \( x=y \) and \( x=\sqrt[ ]{y} \) then \( R=\left\{{(x,y) \ / \ y\leq{x}\leq{\sqrt[ ]{y}}, \ 0\leq{y}\leq{1}}\right\} \) a drawing is convenient
Then \( 0\leq{\theta}\leq{\displaystyle\frac{\pi}{4}} \) for constant \( \theta \), r varies from zero to point \( (x,y) \ / x=\sqrt[ ]{y}\Rightarrow{rcos \theta=\sqrt[ ]{r sen \theta}}\Rightarrow{r=\displaystyle\frac{sen \theta}{cos^2 \theta}} \)
Then \( \displaystyle\int_{0}^{1}\displaystyle\int_{y}^{\sqrt[ ]{y}}\sqrt[ ]{x^2+y^2} \ dx \ dy=\displaystyle\int_{0}^{\pi/4}\displaystyle\int_{0}^{\displaystyle\frac{sen \theta}{cos^2 \theta}}r^2 \ dr \ d \theta \)
Regards