Autor Tema: Ajuste por mínimos cuadrados

0 Usuarios y 1 Visitante están viendo este tema.

04 Junio, 2022, 10:11 am
Leído 116 veces

TimOver

  • $$\Large \color{#6a84c0}\pi$$
  • Mensajes: 24
  • País: es
  • Karma: +0/-0
¡Buenas a tod@s! No entiendo bien estos ejercicios de ajuste por mínimos cuadrados.

Primero de todo, observando la resolución del ejercicio 1, ¿por qué se utilizan estas variables en la tabla (\( \sigma ^{2}, \frac{x}{\sigma ^{2}}, \frac{xy}{\sigma ^{2}} \), etc.).
Tampoco entiendo por qué la matriz de \( \phi ^{t}W\phi \), por ejemplo, es así.
Luego, ¿cómo se calcula \( \bigtriangleup a_{0}, \bigtriangleup a_{1} \)?


Aquí dejo el ejercicio 1 y su resolución (el apartado a):

Considere los siguientes datos experimentales. a) Si la desviación típica de todos los datos \(  \sigma (y)  = 0,2  \) compruebe con una confianza del 99 % si los resultados se ajustan a una recta b) Si la desviación típica de los datos de y fuese \(  \sigma (y)  = 0,5  \)  compruebe ahora con el mismo grado de confianza si podemos decir que los datos de ajustan a una recta.








Por último, ¿por qué en el ejercicio 3, por ejemplo, cambian las variables de la tabla? ¿Cómo puedo conocer estas variables?


Aquí dejo el ejercicio 3 y su resolución:

Determine con un 95 % de confianza si los datos de la siguiente tabla se ajustan a la ecuación \( y = ax + bx^{3} \) siendo \(  \sigma (y)  = 0,1  \) para todos los valores de y.







Agradecería mucho vuestra ayuda para esclarecerme las dudas, porque no consigo entender ningún ejercicio de este tipo. Seguramente es más sencillo de lo que parece, pero ahora mismo estoy completamente bloqueado jaja.

Muchas gracias de antemano!

06 Junio, 2022, 10:34 am
Respuesta #1

geómetracat

  • Moderador Global
  • Mensajes: 3,232
  • País: es
  • Karma: +0/-0
  • Sexo: Masculino
Por las dudas que veo que tienes, mi consejo es que te estudies bien o repases la teoría que te hayan dado. No te puedo explicar todo aquí porque sería demasiado largo, pero voy a intentar responder tus dudas.

En la notación que usas, \( \phi \) es la matriz de datos, donde tienes en cada fila todos los regresores correspondientes a una observación. Por ejemplo, en el primer problema,
\( \phi = \begin{pmatrix}{1}&{1}\\{1}&{2} \\ {1}&{3} \\ {1} & {4} \\ {1}&{5} \end{pmatrix} \).
La primera columna es todo unos porque corresponde al término independiente, la segunda columna es el valor del regresor \( x \).
En el segundo problema, tendrías,
\( \phi = \begin{pmatrix}{0.5}&{0.5^3}\\{1.0}&{1.0^3} \\ {1.5}&{1.5^3} \\ {2.0} & {2.0^3} \end{pmatrix} \).

La matriz \( W \) en tu caso es una matriz diagonal cuyo valor en todas las entradas de la diagonal es \( \frac{1}{\sigma(y)^2} \). Si hubiera heterocedasticidad (es decir, la varianza de \( y \) fuera diferente en cada observación) entonces irían los inversos de las varianzas de cada observación. Si hay homocedasticidad (las varianzas son iguales) entonces puedes omitir esta matriz porque se acaba cancelando en las fórmulas finales. En el caso heterocedástico, cuando se usa esta matriz se habla normalmente de "mínimos cuadrados ponderados". También hay casos en que puedes tener una matriz \( W \) que no sea diagonal. Esto se da en situaciones donde hay correlaciones entre los residuos del modelo, y entonces se habla de "mínimos cuadrados generalizados". Puedes ignorar todo esto si quieres, lo pongo solo por si te aparecen por ahí los nombres que sepas que tiene que ver con la forma de la matriz \( W \).

Por último, \( Y \) es el vector columna con los valores de \( Y \) en cada observación. Por ejemplo, en el primer problema:
\( Y = \begin{pmatrix}2.8\\{3.6}\\ {4.8}\\{6.6} \\ {8.9}\end{pmatrix} \)

Si entiendes esto bien ya puedes hacer los problemas. Si te miras la teoría, verás (te justificarán) que los estimadores de los coeficientes de regresión por mínimos cuadrados vienen dados por
\( \hat{\beta} = (\phi^tW\phi)^{-1}(\phi^tWY) \)
donde \( \hat{\beta} \) representa el vector columna con los coeficientes de regresión estimados por mínimos cuadrados. Por ejemplo, en el primer ejercicio,
\( \hat{\beta} = \begin{pmatrix}{a_0}\\{a_1}\end{pmatrix} = \begin{pmatrix}{0.78}\\{1.52}\end{pmatrix} \).

La otra cosa que necesitas saber es que la matriz de varianzas-covarianzas de los estimadores de los coeficientes de regresión (\( a_0 \) y \( a_1 \) en tu problema) viene dada por \( (\phi^tW\phi)^{-1} \). Por tanto, a la pregunta de "¿cómo se calcula \( \Delta a_0, \Delta a_1 \)?" (aquí el \( \Delta a_0 \) hace referencia a la desviación típica de \( a_0 \)) la respuesta es: "tomas los valores de la diagonal de la matriz \( (\phi^tW\phi)^{-1} \) y sacas su raíz cuadrada".

Finalmente, sobre los valores de las tablas, si te fijas es lo que necesitas para calcular las matrices \( \phi^tW\phi \) y \( \phi^tWY \) en cada caso. Son distintas en los dos problemas porque los regresores son distintos. En el primero tienes \( 1,x \) y en el segundo \( x,x^3 \).

Espero que esto te sirva para aclararte un poco, pero piensa que no es un sustituto de leer (¡y entender!) la teoría.
La ecuación más bonita de las matemáticas: \( d^2=0 \)

06 Junio, 2022, 02:50 pm
Respuesta #2

TimOver

  • $$\Large \color{#6a84c0}\pi$$
  • Mensajes: 24
  • País: es
  • Karma: +0/-0
Vale, muchas gracias! No entendía bien la teoría, pero con tu explicación me has resuelto las dudas y, al volver a repasar la teoría, he comprendido mejor.
De nuevo, muchas gracias!