Autor Tema: Lipchitzianidad de una función

0 Usuarios y 1 Visitante están viendo este tema.

13 Mayo, 2021, 02:26 am
Leído 107 veces

mg

  • $$\Large \color{#5e8d56}\pi\,\pi\,\pi$$
  • Mensajes: 275
  • País: es
  • Karma: +0/-0
  • Sexo: Masculino
Hola,

Acabo de empezar a estudiar los SDO con las matrices.  Y en una demostración aparece lo siguiente:

"Sea \( A:I\longrightarrow{L(\mathbb{R}^N}) \) y \( b:I\longrightarrow{}\mathbb{R}^N \) dos funciones continuas y \( (t_0,y_0)\in I\times{}\mathbb{R}^N \).

Supongamos que, \( f(t,y)=A(t)y+b(t),\;\;\;\forall{I\times{}\mathbb{R}^N} \).

\( f:I\times{}\mathbb{R}^N\longrightarrow{}\mathbb{R}^N \) es continua y localmente lipchitziana respecto de la variable y."

Me gustaría ver rigurosamente que es localmente lipchitziana, pasando por alto que es globlamente lipchitziana en I.

Entonces, para ello tomo un \( I'\times{}\omega=K\subseteq{}I\times{}\mathbb{R}^N \) compacto. Sean \( (t,y_1),(t,y_2)\in{}I\times{}\mathbb{R}^N \) entonces:

\( \left |{f(t,y_1)-f(t,y_2)}\right |=\left |{A(t)(y_1-y_2)}\right |\leq{}\left\|{A(t)}\right\|_s\left |{y_1-y_2}\right | \) donde la norma es la norma espectral y está tomada en el compacto K, es decir con \( t\in{}I' \).

Entonces tomando \( L_k=\left\|{A(t)}\right\|_s\geq{}0 \), probamos que f es localmente lipchitziana.

¿Añadirían algo?

13 Mayo, 2021, 10:48 am
Respuesta #1

Luis Fuentes

  • el_manco
  • Administrador
  • Mensajes: 49,580
  • País: es
  • Karma: +0/-0
  • Sexo: Masculino
Hola

 Yo creo que está bien.

Saludos.